Problem: | The Panda family has 5 children, aged 9, 12, 7, 16 and 13. What is the age of the middle child? | |||
Solution: | Ordering the children's ages from least to greatest, we get: | |||
7, 9, 12, 13, 16 | ||||
Answer: | The age of the middle child is the middlemost number in the data set, which is 12 |
But since our title does not stand for Pandas, better we move to Indian Economy,
Indian GDP was 1,708,46 billion US dollars in 2010 and it is expected to touch the target of 3,315,36 billion US dollars by 2020, What would be the value of GDP when we can say India has reached its half of the target during this growth period? As obvious it would be the GDP of middlemost year, i.e. 2015.
The "middle" value in the list of numbers is known as "median". The median is also the number that is halfway into the set. To find the median, the data should be arranged in order from least to greatest. If there is an even number of items in the data set, then the median is found by taking the mean (average) of the two middlemost numbers.
Median is more used for illustration purposes when the mean is misleading. For example, according to Forbes with 111 billionaires, India is 3rd on rich list at the same time World bank marked about 276 million people of India living below $1.25 per day. In 2012, the Indian government stated 21.9% of its population is below its official poverty limit. by looking at the median household income in countries. Here the median, unlike the mean provide better representation of data, doesn't let the super rich make the normal man look not-so-poor.
Another example for median may go like this, if you participated in a competitive exam and got some score and some rank according to your score. You can assess how much difference a mark can make. That is, if you find the median of the score, which is the score of the person who got exactly the middle rank. And compare it with the highest and lowest, you'll get a better idea of how tough the competition was.
Median holds a strong scientific representation for half life theory. Radioactive material (like Uranium) is often summarized by its half-life, which is also a median. This decides what we want to use the material for. If low, it might be used as a radioactive contrast. If high, maybe atomic clock.
EmoticonEmoticon